
RETURNING SAMPLES FROM ENCELADUS FOR LIFE DETECTION could answer one of the biggest questions of our time at a range of reasonable costs Marc Neveu^{1,2}, Author2, Author3, Author4, Author5, Author6, Author7, Author8, Author9

WHY	ENCE	LADUS	?			
Farthes	t along	the Roa	dmap t	o Ocean	World	ds (Hendrix
	IDENTIFY O	CEAN WORLDS	CHARACT	ERIZE OCEANS	ASSE	ess HABITABILITY
•	ENERGY SOURCES	OCEAN SIGNATURES	SOLVENTS	ROCK/OCEAN INTERFACE	ENERGY FOR LIFE	PHYSCHEM. CO DITIONS FOR LIF
ENCELADUS						
EUROPA						
TITAN					••	
GANYMEDE			• • •	• • • •		
CALLISTO	• • •		• • •			

SCIENCE QUESTIONS / MEASUREMENTS / SAMPLE NEEDS

- How habitable is Enceladus' subsurface ocean? Elemental & stable isotope composition up to U (z=92) Chemical forms of inorganic compounds up to 500 amu
- How far toward life has chemistry progressed? Molecular distribution up to 10000 amu Molecular structures
- 3. Is there life in Enceladus' ocean? Isotope composition: H, C, N, O (±1‰) on specific organic
- Enantiomeric excess: D/L at $\pm 5\%$ precision Sequencing of polymers
- Imaging for morphology and activity signatures

FROM SCIENCE QUESTIONS TO ARCHITECTURES

- 3 nmol /compound /analysis
- (3 analyses + 80% archival = 15 analyses)
- = 0.1 mg of organic material
- How much of the plume material is organic? In vapor: ~1% (Waite et al. 2009) >> Earth seawater: TOC=0.5 ppm In solids: ≥0.1% (Postberg et al. 2018) (Thurman 1985)
- How much plume material can be collected in 1 flyby?
 - $N_{flybys} = 100 \times (N_{compounds}/30) \times (altitude/20 \text{ km}) \times (A_{collector}/1m^2)$
- How much falls back on the South Polar Terrain? Mass flux of solids: 50 kg/s (Ingersoll & Ewald 2011), SPT: 130000 km² m_{fallback} = 3 mg/day x (fallback/10%) x (A_{collector}/1m²)

ARCHITECTURE TRADES

 $\Delta V \approx Cassini$ Several plume locations

MULTI-FLYBY

Capture @4 km/s Many flybys for small sampl

/compound /analysis ICPMS: <fmol IC-MS: <fmol?

> MALDI: <fmol LCMS: <fmol

nano-SIMS: 20 fmol GC-IRMS: 3 nmol LCMS: <fmol MALDI: <fmol [preserved,

thawed sample]

TIMELINE New start

Assuming 0.1%, we need to collect 100 mg of plume material.

From ISS & CDA: 0.1 mg/(m² collector) @ altitude 200 km; 1 mg/m² @ 20 km

HOVER	ORBITER	LANDER
Capture @ olume ejection speed	Context science More sample	Context science Snow+surface Large sample
70% more Δ V	50% more ∆V	70% more ∆V 1 location

FLAGSHIP

PLANETARY PROTECTION

AREAS OF FOCUS

Collector material (Glavin et al. 2014)

Break the chain (Neveu et al. 2018)

Sample receiving facility (Takano et al. 2014)

AFFILIATIONS

¹NASA Goddard Space Flight Center ²University of Maryland, College Park

REFERENCES

Glavin, D.P. et al. (2014) Plume collection strategies for future icy body sample return missions. Int. Workshop on Instr. for Planetary Missions, #1012. Hendrix, A.R., Hurford, T.A., et al. (2018) The NASA Roadmap to Ocean Worlds. *Astrobiology* **19**, 1-27. Neveu, M. et al. (2018) Quantitative planetary protection for sample return from ocean worlds. 42nd COSPAR Scientific Assembly, #B5.3-18. Postberg, F. et al. (2018) Macromolecular organic compounds from the depths of Enceladus. *Nature* **558**, 546-568. Sherwood, B. (2016) Strategic map for exploring the ocean-world Enceladus. Acta Astronautica **126**, 52-58 Takano, Y. et al. (2014) Planetary protection on international waters: An onboard protocol for capsule retrieval and biosafety control in sample return mission. *Adv. Sp. Res.* **53**, 1135-1142. Thurman, E.M. (1985) Amount of organic carbon in natural waters. In *Organic geochemistry of natural waters*, Springer.

